If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-4.9t^2+39.2t+1.6
We move all terms to the left:
0-(-4.9t^2+39.2t+1.6)=0
We add all the numbers together, and all the variables
-(-4.9t^2+39.2t+1.6)=0
We get rid of parentheses
4.9t^2-39.2t-1.6=0
a = 4.9; b = -39.2; c = -1.6;
Δ = b2-4ac
Δ = -39.22-4·4.9·(-1.6)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{16*98}=\sqrt{16}*\sqrt{98}=4\sqrt{98}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39.2)-4\sqrt{98}}{2*4.9}=\frac{39.2-4\sqrt{98}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39.2)+4\sqrt{98}}{2*4.9}=\frac{39.2+4\sqrt{98}}{9.8} $
| (4n-5)=12n-15 | | 1/2(11.5+x)=19.7 | | 0.6(10000)+0.7x=0.65(10000+x) | | 164=33-w | | y-43=51 | | 4(7x)+5=25 | | h/5=4/10 | | x+21/3=55/6 | | 256=2x-34 | | 1/3c=-5 | | 3.5+k=4.9 | | 7+8n=-81 | | m-36=24 | | 8a+8=40 | | 130=10+6x | | -12=2b+6 | | 0.36x-2=0.43x-0.6 | | (k^2)+7-3k=2k+1 | | 0.95x-5.1=0.65-0.2x | | k^2+7-3k=2k+1 | | 0.4(10000)+0.5x=0.46(10000+x) | | 0.30x+0.05(10-x)=0.10(-20) | | 1.6=40-4x | | 1.66=8x-20 | | 3v^2+9v-20=0 | | 1.6=8x-20 | | 4y=6.32 | | 0.85x+0.05(4-x)=0.10(50) | | 0.85x+0.05(4-x)=0.01(50) | | 3+f^2+2f=3+3f | | n/3.4=7.2 | | 2(8x)+5=15 |